Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Lab Chip ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651213

RESUMO

Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (µDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on µDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal µDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.

2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585935

RESUMO

Present cancer disease models - typically based on cell cultures and animal models that lack the human tumor microenvironment (TME) - are extremely poor predictors of human disease outcomes. Microscale cancer models that combine the micromanipulation of tissues and fluids offer the exciting possibility of miniaturizing the drug testing workflow, enabling inexpensive, more efficient tests of high clinical biomimicry that maximize the use of scarce human tissue and minimize animal testing. Critically, these microscale models allow for precisely addressing the impact of the structural features of the heterogeneous TME to properly target and understand the contributions of these unique zones to therapeutic response. We have recently developed a precision slicing method that yields large numbers of cuboidal micro-tissues ("cuboids", ∼ (400 µm) 3 ) from a single tumor biopsy. Here we evaluate cuboids from syngeneic mouse tumor models and human tumors, which contain native immune cells, as models for drug and immunotherapy evaluation. We characterize relevant TME parameters, such as their cellular architecture (immune cells and vasculature), cytokine secretion, proteomics profiles, and their response to drug panels in multi-well arrays. Despite the cutting procedure and the time spent in culture (up to 7 days), the cuboids display strong functional responses such as cytokine and drug responses. Overall, our results suggest that cuboids make an excellent model for applications that require the TME, such as immunotherapy drug evaluations, including for clinical trials and personalized oncology approaches.

3.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586030

RESUMO

The small amount of human tissue available for testing is a paramount challenge in cancer drug development, cancer disease models, and personalized oncology. Technologies that combine the microscale manipulation of tissues with fluid handling offer the exciting possibility of miniaturizing and automating drug evaluation workflows. This approach minimizes animal testing and enables inexpensive, more efficient testing of samples with high clinical biomimicry using scarce materials. We have developed an inexpensive platform based on an off-the-shelf robot that can manipulate microdissected tissues (µDTs) into user-programmed positions without using intricate microfluidic designs nor any other accessories such as a microscope or a pneumatic controller. The robot integrates complex functions such as vision and fluid actuation by incorporating simple items including a USB camera and a rotary pump. Through the robot's camera, the platform software optically recognizes randomly-seeded µDTs on the surface of a petri dish and positions a mechanical arm above the µDTs. Then, a custom rotary pump actuated by one of the robot's motors generates enough microfluidic lift to hydrodynamically pick and place µDTs with a pipette at a safe distance from the substrate without requiring a proximity sensor. The platform's simple, integrated construction is cost-effective and compact, allowing placement inside a tissue culture hood for sterile workflows. The platform enables users to select µDTs based on their size, place them in user-programmed arrays, such as multi-well plates, and control various robot motion parameters. As a case application, we use the robotic system to conduct semi-automated drug testing of mouse and human µDTs in 384-well plates. Our user-friendly platform promises to democratize microscale tissue research to clinical and biological laboratories worldwide.

4.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352494

RESUMO

Functional assays on intact tumor biopsies can potentially complement and extend genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key determinants of therapeutic response, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Currently, most of these assays rely on fluorescent labeling, a semi-quantitative method best suited to be a single-time-point terminal assay or labor-intensive terminal immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of increases of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Since the aptamer probe can be easily exchanged to recognize different targets, the platform could be adapted for multiplexed monitoring of various biomarkers, providing critical information on the tumor and its microenvironment. This approach could not only help develop more advanced cancer disease models but also apply to other complex in vitro disease models, such as organs-on-chips and organoids.

5.
Sci Total Environ ; 912: 168864, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040365

RESUMO

Sustainable exploitation of groundwater resources for drinking water provision in rural communities in sub-Sahara Africa remains elusive due to the limited knowledge of these hydrogeological systems. This is exacerbated by poor maintenance of existing infrastructure, limited technical capacity, the socio-economic characteristics of the area and poor governance. Assessing the likelihood of a given individual user experiencing water shortage calls for an interdisciplinary approach. After a preliminary multifactorial analysis incorporating a range of variables from technical to societal, it was found that most of the overall risk of water shortage for an individual household could be attributed to three factors; (1) Proximity, specified as the distance to the closest supply well (determined by geographical parameters), (2) Availability of good quality water in the wells (determined by hydrogeological understanding and modelling), and (3) Sustainability (determined by socio-technical and socio-economic parameters). In the latter case, a distinction was made between hardware functionality- the water point's performance considering a sufficient yield and reliability through time- and software functionality, based on a combination of socioeconomic data from surveys and analysed using Multiple Factor Analysis (MFA). All three factors are eventually mapped onto indicators in the range of [0-1] and then represented in a Geographical Information System based on the partition of the entire spatial domain (e.g., counties, villages, and neighbourhoods). The three indicators are then combined in a final index based on the product of the three factors, thus mapping time-dependent overall risk and allowing the assessment of temporal risk-evolution scenarios. The methodology is applied to Kwale County, Kenya, where community handpumps and groundwater points comprise the main water supply system. Apart from mapping the present situation, the methodology is finally used to assess the impact of future climate scenarios.

6.
Lab Chip ; 23(18): 4019-4032, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584639

RESUMO

Stereolithographic 3D-printing (SLA) permits facile fabrication of high-precision microfluidic and lab-on-a-chip devices. SLA photopolymers often yield parts with low mechanical compliancy in sharp contrast to elastomers such as poly(dimethyl siloxane) (PDMS). On the other hand, SLA-printable elastomers with soft mechanical properties do not fulfill the distinct requirements for a highly manufacturable resin in microfluidics (e.g., high-resolution printability, transparency, low-viscosity). These limitations restrict our ability to print microfluidic actuators containing dynamic, movable elements. Here we introduce low-viscous photopolymers based on a tunable blend of the monomers poly(ethylene glycol) diacrylate (PEGDA, Mw ∼ 258) and the monoacrylate poly(ethylene glycol methyl ether) methacrylate (PEGMEMA, Mw ∼ 300). In these blends, which we term PEGDA-co-PEGMEMA, tuning the PEGMEMA content from 0% to 40% (v/v) alters the elastic modulus of the printed plastics by ∼400-fold, reaching that of PDMS. Through the addition of PEGMEMA, moreover, PEGDA-co-PEGMEMA retains desirable properties of highly manufacturable PEGDA such as low viscosity, solvent compatibility, cytocompatibility and low drug absorptivity. With PEGDA-co-PEGMEMA, we SLA-printed drastically enhanced fluidic actuators including microvalves, micropumps, and microregulators with a hybrid structure containing a flexible PEGDA-co-PEGMEMA membrane within a rigid PEGDA housing. These components were built using a custom "Print-Pause-Print" protocol, referred to as "3P-printing", that allows for fabricating high-resolution multimaterial parts with a desktop SLA printer without the need for post-assembly. SLA-printing of multimaterial microfluidic actuators addresses the unmet need of high-performance on-chip controls in 3D-printed microfluidic and lab-on-a-chip devices.

8.
J Hazard Mater ; 448: 130876, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736215

RESUMO

Submarine Groundwater Discharge (SGD) is recognized as a relevant source of pollutants to the sea, but little is known about its relevance as a source of chemicals of emerging concern (CECs). Here, both the presence and distribution of a wide range of CECs have been evaluated in the most comprehensive manner to date, in a well-characterized Mediterranean coastal aquifer near Barcelona (Spain). Samples from coastal groundwater and seawater allowed for the unique spatial characterization of the pollutants present in the land-ocean interface, an outstanding research gap that required attention. The main goals were (1) to determine CECs in the aquifer, so as to evaluate the SGD as a relevant source of marine pollution, and (2) to identify new tracers to improve our understanding of SGD dynamics. To this end, 92 CECs were located in the aquifer by using wide-scope analytical target methodologies (>2000 chemicals). Among them, the perfluoroalkyl and polyfluoroalkyl substances (PFAS), along with the pharmaceuticals carbamazepine and topiramate, were revealed to be good markers for tracing anthropogenic contamination in ground- and seawater, in concrete situations (e.g., highly contaminated sites). Additionally, non-target analysis expanded the number of potential tracers, making it a promising tool for identifying both the source and the fate of pollutants.

9.
Nat Protoc ; 18(4): 1243-1259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36609643

RESUMO

Methods to make microfluidic chips using 3D printers have attracted much attention because these simple procedures allow rapid fabrication of ready-to-use products from digital 3D designs with minimal human intervention. Printing high-resolution chips that are simultaneously transparent, biocompatible and contain regions of dissimilar materials is an ongoing challenge. Transparency allows for the optical inspection of specimens containing cells and labeled biomolecules inside the chip. Being able to use different materials for different layers in the product increases the number of potential applications. In this 'print-pause-print' protocol, we describe detailed strategies for fabricating transparent biomicrofluidic devices and multimaterial chips using stereolithographic 3D printing. To print transparent biomicrofluidic chips, we developed a transparent resin based on poly(ethylene glycol) diacrylate (PEG-DA) (average molecular weight: 250 g/mol, PEG-DA-250) and a smooth chip surface technique achieved using glass. Cells can be successfully cultured and visualized on PEG-DA-250 prints and inside PEG-DA-250 microchannels. The multimaterial potential of the technique is exemplified using a molecular diffusion device that comprises parts made of two different materials: the channel walls, which are water impermeable, and a porous barrier structure, which is permeable to small molecules that diffuse through it. The two materials were prepared from two different molecular-weight PEG-DA-based printing resins. Alignment of the two dissimilar material structures is performed automatically by the printer during the printing process, which only requires a simple pause step to exchange the resins. The procedure takes less than 1 h and can facilitate chip-based applications including biomolecule analysis, cell biology, organ-on-a-chip and tissue engineering.


Assuntos
Microfluídica , Estereolitografia , Humanos , Microfluídica/métodos , Impressão Tridimensional , Polietilenoglicóis/química
10.
Mol Ecol ; 31(22): 5745-5764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112071

RESUMO

Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.


Assuntos
Estuários , Água Subterrânea , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água Subterrânea/microbiologia , Bactérias/genética , Monitoramento Ambiental
11.
Sci Total Environ ; 838(Pt 1): 155978, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588800

RESUMO

In coastal aquifers, two opposite but complementary processes occur: Seawater intrusion (SWI), which may salinize heavily exploited aquifers, and Submarine groundwater discharge (SGD) which transports oligo-elements to the sea. Aquifers are expected to be chemically reactive, both because they provide abundant surfaces to catalyze reactions and the mixing of very different Fresh Water (FW) and Sea Water (SW) promote numerous reactions. Characterizing and quantifying these reactions is essential to assess the quality and composition of both aquifer water, and SGD. Indeed, sampling SGD is difficult, so its composition is usually uncertain. We propose a reactive end-member mixing analysis (rEMMA) methodology based on principal component analysis (PCA) to (i) identify the sources of water and possible reactions occurring in the aquifer and (ii) quantify mixing ratios and the extent of chemical reactions. We applied rEMMA to the Argentona coastal aquifer located North of Barcelona that contains fluvial sediments of granitic origin and overlies weathered granite. The identification of end members (FW and SW) and the spatial distribution of their mixing ratios illustrate the application procedure. The extent of reactions and their spatial distribution allow us to distinguish reactions that occur as a result of mixing from those caused by sediment disequilibrium, which are relevant to recirculated saltwater SGD. The most important reaction is cation exchange, especially between Ca and Na, which promotes other reactions such as Gypsum and Fluorite precipitation. Iron and Manganese are mobilized in the SW portion but oxidized and precipitated in the mixing zone, so that Fe (up to 15 µEq/L) and Mn (up to 10 µEq/L) discharge is restricted to SW SGD. Nitrate is reduced in the mixing zone. The actual reaction amounts are site-specific, but the processes are not, which leads us to conjecture the importance of these reactions to understand the SGD discharge elsewhere.


Assuntos
Água Subterrânea , Monitoramento Ambiental , Água Doce , Água Subterrânea/análise , Água do Mar/análise , Navios , Água/análise
12.
Exp Cell Res ; 401(2): 112527, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675807

RESUMO

Metastasis is the leading cause of mortality in cancer patients. To migrate to distant sites, cancer cells would need to adapt their behaviour in response to different tissue environments. Thus, it is essential to study this process in models that can closely replicate the tumour microenvironment. Here, we evaluate the use of organotypic liver and brain slices to study cancer metastasis. Morphological and viability parameters of the slices were monitored daily over 3 days in culture to assess their stability as a realistic 3D tissue platform for in vitro metastatic assays. Using these slices, we evaluated the invasion of MDA-MB-231 breast cancer cells and of a subpopulation that was selected for increased motility. We show that the more aggressive invasion of the selected cells likely resulted not only from their lower stiffness, but also from their lower adhesion to the surrounding tissue. Different invasion patterns in the brain and liver slices were observed for both subpopulations. Cells migrated faster in the brain slices (with an amoeboid-like mode) compared to in the liver slices (where they migrated with mesenchymal or collective migration-like modes). Inhibition of the Ras/MAPK/ERK pathway increased cell stiffness and adhesion forces, which resulted in reduced invasiveness. These results illustrate the potential for organotypic tissue slices to more closely mimic in vivo conditions during cancer cell metastasis than most in vitro models.


Assuntos
Neoplasias da Mama/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Encéfalo/patologia , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/patologia , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas ras/genética
13.
Lab Chip ; 21(1): 122-142, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33174580

RESUMO

As preclinical animal tests often do not accurately predict drug effects later observed in humans, most drugs under development fail to reach the market. Thus there is a critical need for functional drug testing platforms that use human, intact tissues to complement animal studies. To enable future multiplexed delivery of many drugs to one small biopsy, we have developed a multi-well microfluidic platform that selectively treats cuboidal-shaped microdissected tissues or "cuboids" with well-preserved tissue microenvironments. We create large numbers of uniformly-sized cuboids by semi-automated sectioning of tissue with a commercially available tissue chopper. Here we demonstrate the microdissection method on normal mouse liver, which we characterize with quantitative 3D imaging, and on human glioma xenograft tumors, which we evaluate after time in culture for viability and preservation of the microenvironment. The benefits of size uniformity include lower heterogeneity in future biological assays as well as facilitation of their physical manipulation by automation. Our prototype platform consists of a microfluidic circuit whose hydrodynamic traps immobilize the live cuboids in arrays at the bottom of a multi-well plate. Fluid dynamics simulations enabled the rapid evaluation of design alternatives and operational parameters. We demonstrate the proof-of-concept application of model soluble compounds such as dyes (CellTracker, Hoechst) and the cancer drug cisplatin. Upscaling of the microfluidic platform and microdissection method to larger arrays and numbers of cuboids could lead to direct testing of human tissues at high throughput, and thus could have a significant impact on drug discovery and personalized medicine.


Assuntos
Antineoplásicos , Técnicas Analíticas Microfluídicas , Neoplasias , Preparações Farmacêuticas , Animais , Antineoplásicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Camundongos , Microfluídica , Neoplasias/tratamento farmacológico , Medicina de Precisão , Microambiente Tumoral
14.
Environ Sci Technol ; 54(19): 12092-12101, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897067

RESUMO

Redox potential (Eh) measurements are widely used as indicators of the dominant reduction-oxidation reactions occurring underground. Yet, Eh data are mostly used in qualitative terms, as actual values cannot be used to distinguish uniquely the dominant redox processes at a sampling point and should therefore be combined with a detailed geochemical characterization of water samples. In this work, we have intensively characterized the redox potential of the first meter of soil in an infiltration pond recharged with river water using a set of in situ sensors measuring every 12 min during a 1 year period. This large amount of data combined with hydrogeochemical campaigns allowed developing a reactive transport model capable of reproducing the redox potential in space and time together with the site hydrochemistry. Our results showed that redox processes were mainly driven by the amount of sedimentary organic matter in the system as well as by seasonal variation of temperature. As a subsidiary result, our work emphasizes the need to use a fully coupled model of flow, heat transport, solute transport, and the geochemical reaction network to fully reproduce the Eh observations in the topsoil.


Assuntos
Temperatura Alta , Lagoas , Água Doce , Oxirredução , Solo
15.
Microsyst Nanoeng ; 6: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879734

RESUMO

The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.

16.
J Contam Hydrol ; 228: 103556, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31727265

RESUMO

Groundwater is the major source of drinking water in most rural areas in developing countries. This resource is threatened by the potential presence of faecal bacteria coming from a variety of sources and pollution paths, the former including septic tanks, landfills, and crop irrigation with untreated, or insufficiently treated, sewage effluent. Accurately assessing the microbiological safety of water resources is essential to reduce diseases caused by waterborne faecal exposure. The objective of this study is to discern which are the most significant sanitary, hydrogeological, geochemical, and physical variables influencing the presence of faecal bacterial pollution in groundwater by means of statistical multivariate analyses. The concentration of Escherichia coli was measured in a number of waterpoints of different types in a rural area located in the coast of Kenya, assessing both a dry and a wet season. The results from the analyses reaffirm that the design of the well and their maintenance, the distance to latrines, and the geological structure of the waterpoints are the most significant variables affecting the presence of E. coli. Most notably, the presence of faecal bacteria in the study area correlates negatively with the concentration of ion Na+ (being an indirect indicator of fast recharge in the study site), and also negatively with the length of the water column inside the well.


Assuntos
Escherichia coli , Água Subterrânea , Bactérias , Países em Desenvolvimento , Monitoramento Ambiental , Microbiologia da Água
17.
Sci Total Environ ; 694: 133634, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756808

RESUMO

The industrialization process taking place in Africa has led to an overall increase in groundwater abstraction in most countries in the continent. However, the lack of hydrogeological data, as in many developing countries, makes it difficult to properly manage groundwater systems. This study presents a real case study in which a combination of different hydrogeological tools together with different sources of information allow the assessment of how increased competition for water may be affecting groundwater systems by analysing the sustainability of new abstraction regimes under different real climatic condition (before, during and after La Niña 2016). The area where this approach has been applied is Kwale County (in Coastal Kenya) in a hydrogeological context representative of an important part of the east coast of the continent, where new mining and agriculture activities co-exist with tourism and local communities. The results show that the lack of aquifer systems data can be overcome, at least partly, by integrating different sources of information. Most of the time, water-reliant users collect specific hydrogeological information that can contribute to defining the overall hydrogeological system, since their own main purpose is to exploit the aquifer with the maximum productivity. Therefore, local community water usage, together with different stakeholder's knowledge and good corporate water management act as a catalyst for providing critical data, and allows the generation of credible models for future groundwater management and resource allocation. Furthermore, complementary but simple information sources such as in situ interviews, Google Earth, Trip Advisor and easy-to use analytical methods that can be applied in the African context as in many developing countries, and enables groundwater abstraction to be estimated and the sustainability of the aquifer system to be defined, allowing potential future risks to be assessed.

18.
Lab Chip ; 19(18): 3086-3093, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502633

RESUMO

Hydrogels allow for controlling the diffusion rate and amount of solute according to the hydrogel network and thus have found many applications in drug delivery, biomaterials, toxicology, and tissue engineering. This paper describes a 3D-printed microfluidic chip for the straightforward partitioning of hydrogel barriers between microchannels. We use a previously-reported 3-channel architecture whereby the middle channel is filled with a hydrogel - acting like a porous barrier for diffusive transport - and the two side channels act as sink and source; the middle channel communicates with the side channels via orthogonal, small capillary channels that are also responsible for partitioning the hydrogel during filling. Our 3D-printed microfluidic chip is simple to fabricate by stereolithography (SL), inexpensive, reproducible, and convenient, so it is more adequate for transport studies than a microchip fabricated by photolithographic procedures. The chip was fabricated in a resin made of poly(ethylene glycol) diacrylate (PEG-DA) (MW = 258) (PEG-DA-258). The SL process allowed us to print high aspect ratio (37 : 1) capillary channels (27 µm-width and 1 mm-height) and enable the trapping of liquid-phase hydrogels in the hydrogel barrier middle channel. We studied the permeability of hydrogel barriers made of PEG-DA (MW = 700) (PEG-DA-700, 10% polymer content by wt. in water) - as a model of photopolymerizable barriers - and agarose (MW = 120 000, 2% polymer content by wt. in water) - as a model of thermally-gelled barriers. We measured the diffusion of fluorescein, 10k-dextran-Alexa 680 and BSA-Texas Red through these barriers. Fluorescein diffusion was observed through both 10% PEG-DA-700 and 2% agarose barriers while 10k-dextran-Alexa 680 and BSA-Texas Red diffused appreciably only through the 2% agarose hydrogel barrier. Our microfluidic chip facilitates the tuning of such barriers simply by altering the hydrogel materials. The straightforward trapping of selective barriers in 3D-printed microchannels should find wide applicability in drug delivery, tissue engineering, cell separation, and organ-on-a-chip platforms.


Assuntos
Hidrogéis/química , Técnicas Analíticas Microfluídicas , Polietilenoglicóis/química , Impressão Tridimensional , Difusão , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional/instrumentação
19.
Micromachines (Basel) ; 10(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319620

RESUMO

In this paper we describe the use of thread as a low-cost material for a microfluidic chemosensitivity assay that uses intact tumor tissue ex vivo. Today, the need for new and effective cancer treatments is greater than ever, but unfortunately, the cost of developing new chemotherapy drugs has never been higher. Implementation of low-cost microfluidic techniques into drug screening devices could potentially mitigate some of the immense cost of drug development. Thread is an ideal material for use in drug screening as it is inexpensive, widely available, and can transport liquid without external pumping hardware, i.e., via capillary action. We have developed an inexpensive microfluidic delivery prototype that uses silk threads to selectively deliver fluids onto subregions of living xenograft tumor slices. Our device can be fabricated completely for less than $0.25 in materials and requires no external equipment to operate. We found that by varying thread materials, we could optimize device characteristics, such as flow rate; we specifically explored the behavior of silk, nylon, cotton, and polyester. The incremental cost of our device is insignificant compared to the tissue culture supplies. The use of thread as a microfluidic material has the potential to produce inexpensive, accessible, and user-friendly devices for drug testing that are especially suited for low-resource settings.

20.
Annu Rev Biomed Eng ; 21: 325-364, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167099

RESUMO

The microfluidics field is at a critical crossroads. The vast majority of microfluidic devices are presently manufactured using micromolding processes that work very well for a reduced set of biocompatible materials, but the time, cost, and design constraints of micromolding hinder the commercialization of many devices. As a result, the dissemination of microfluidic technology-and its impact on society-is in jeopardy. Digital manufacturing (DM) refers to a family of computer-centered processes that integrate digital three-dimensional (3D) designs, automated (additive or subtractive) fabrication, and device testing in order to increase fabrication efficiency. Importantly, DM enables the inexpensive realization of 3D designs that are impossible or very difficult to mold. The adoption of DM by microfluidic engineers has been slow, likely due to concerns over the resolution of the printers and the biocompatibility of the resins. In this article, we review and discuss the various printer types, resolution, biocompatibility issues, DM microfluidic designs, and the bright future ahead for this promising, fertile field.


Assuntos
Desenho Assistido por Computador/instrumentação , Dispositivos Lab-On-A-Chip , Impressão Tridimensional/instrumentação , Engenharia Biomédica/instrumentação , Engenharia Biomédica/tendências , Desenho Assistido por Computador/tendências , Desenho de Equipamento/tendências , Dispositivos Lab-On-A-Chip/tendências , Impressão Tridimensional/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...